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Abstract

We present regular model checking, a framework for algorithmic verification of
infinite-state systems with, e.g., queues, stacks, integers, or a parameterized
linear topology. States are represented by strings over a finite alphabet and
the transition relation by a regular length-preserving relation on strings. Both
sets of states and the transition relation are represented by regular sets. Major
problems in the verification of parameterized and infinite-state systems are to
compute the set of states that are reachable from some set of initial states,
and to compute the transitive closure of the transition relation. We present
an automata-theoretic construction for computing a non-finite composition of
regular relations, e.g., the transitive closure of a relation. The method is in-
complete in general, but we give sufficient conditions under which it works.
We show how to reduce model checking of ω-regular properties of parameter-
ized systems into a non-finite composition of regular relations. We also report
on an implementation of regular model checking, based on a new package for
non-deterministic finite automata.
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Chapter 1

Introduction

There are many tools for increasing the confidence in that a system works as it
should. One of these is the use of formal methods, methods based on mathematical
models for reasoning about systems. Several attempts have been made to automate
these reasonings, allowing large systems to be analyzed. In particular, the method
of model checking [CGP99] has been a successful technique in this direction. In
model checking, the system to be analyzed is modeled using some framework based
on defining a set of states and a transition relation determining how the system may
change over time. This model can then be checked against a specification, written
in some logic specifying desirable properties of the system’s dynamic behavior.

Although model checking has been successful in analyzing fully automatically sys-
tems of varying size, its applicability has been limited to systems with a finite, and
usually a small, number of states. To remedy this, researchers have proposed a
number of techniques for handling other types of systems containing components
which are inherently infinite state, e.g., Boigelot and Wolper [BW94] for systems
containing integer variables. Each of these techniques takes advantage of some
regularity in the system to be able to analyze it automatically. The main problem
is to define a finite representation of infinite sets of states. For example, the equa-
tion y = 2x can be used to represent the set of even numbers y in a finite way.
There are several such techniques, each using a particular way of representing an
infinite number of states. There is a currently a need, however, to combine these
techniques into something more general.

This thesis aims to present a unifying framework, called regular model checking,
still being able to analyze a large class of systems automatically. The framework
is based on formal language theory, using words over a finite alphabet to describe
data-types such as integers and queues. Regular sets are used to represent sets
of states and transition relations. The ability to automate model checking in this
framework thus depends on the ability to find an encoding into words such that
the resulting sets are regular. Even so, the framework is able to include several
frameworks in the literature as a special case. Thus, regular model checking is a
unifying framework for automated formal verification of infinite-state systems.
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Let us describe the concept of model checking. One common approach for veri-
fication is to describe systems using some logic that describes how the system is
supposed to behave, representing assumptions about the system. The specifica-
tion is written in the same logic, and it is checked whether the description implies
the specification. This can be done using semiautomatic theorem provers, e.g.
PVS [SOR93], which assist in finding the proofs. In this approach, the description
defines not only one model, but all models satisfying the description. In model
checking, the model is described directly, more concretely, using some framework
often based on sets of states and transitions between the states. The model can
be checked against the specification, using some algorithm. This is called model
checking.

The inherent problem with model checking approaches is the state-space explosion
problem, that the number of states is very large for most models. This problem
has been attacked by introducing compact representations of sets of states allowing
larger sets of states to be represented. These representations take advantage of
some regular structure of the system. Such a non-direct representation is called
a symbolic representation, and, accordingly, model checking using symbolic repre-
sentations is called symbolic model checking. The term symbolic model checking is
used by McMillan [BCMD92, McM93] to denote symbolic model checking based
on BDDs (Bryant [Bry86]), a compact representation of finite sets, and has been
used with notable success in verification of hardware circuits.

The idea of symbolic model checking has also been applied to infinite-state systems,
where the representation is actually representing infinite sets of states. For exam-
ple, there are frameworks based on linear constraints suitable for model checking
systems with integer variables (e.g. Boigelot and Wolper [BW94]), and frame-
works based on special representations of constraints on clock variables suitable
for model checking systems with clock variables (Alur [AD94]), and so on. One
problem for these approaches is the lack of methods for combining and unifying
these techniques for automatic verification of heterogenous systems using variables
of varying types. This problem is addressed by this thesis.

Regular model checking is based on formal language theory, using words (strings)
over a finite alphabet to describe states. All data-types such as integers and
queues are translated into this word representation. The idea of using regular
sets to represent this kind of data-types has been used for integers by Wolper and
Boigelot [WB00] and for queues by Boigelot and Godefroind [BG96], encoding
the queue content as a word of a special form. For example, an integer value
n could be represented in the framework of regular model checking by the word
an⊥m for some m over the alphabet {a,⊥}. The reason for the presence of the
symbol ⊥ is that transitions in our framework will be length-preserving, i.e., they
do not change the length of the words. Thus, in this example the symbol ⊥
provides for space to increase the integer variable represented by the word. Sets
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of states are represented by regular sets, which allows us to reason about words
of arbitrary length. Continuing our example, the set of all even integers could
be represented by the set denoted by the regular expression (aa)∗⊥∗. Care must
be taken not to chose encodings resulting in non-regular sets. Suppose that we
choose to represent the value of two integer variables x and y using words over
the alphabet {x, y,⊥} where the word xn · ym · ⊥k for some k denotes a state in
which the variable x equals n and the variable y equals m. Then, we can not
represent the set of states where the value of x equals the value of y, since the set
{xn · ym ·⊥k : m = n} is not regular. A better idea would instead be to represent
the two integer variables by words over the alphabet 2{x,y}, such that the symbol
x is in the set at position n iff the integer variable x equals n and similarly for y.
Then, the set {{}n · {x, y} · {}m : m,n ≥ 0} representing states where x equals y
is regular.

Transition relations in regular model checking representing how the system can
progress over time are based on regular relations, relations represented by au-
tomata. One example of a transition relation is a relation relating states where an
integer variable is incremented by one. If we represent this integer variable using
a word an · ⊥m, where n represents the value of the variable, this relation would
relate words where the second word contains one more a than the first. One often
wants to analyze the set of reachable states in a system, starting from the set of
initial states and repeatedly applying the transition relation obtaining new states
until no new states are found. In this example, this process would never terminate
since we would get a new state no matter how many times we apply the transition
increasing the integer variable by one. What is needed is a method for analyzing
the behavior of a transition when applied an unbounded number of times, in this
example yielding the set a∗⊥∗ if we start from the set of words ⊥∗. In terms of
regular model checking, we need the ability to calculate non-finite compositions of
relations, in this example the transitive closure of a relation. An important contri-
bution of this thesis is a method to compute the result of such compositions. The
method is incomplete, as an automaton representing the result need not even exist.
A termination condition is given, which also can be used as a characterization of
relational compositions that are equivalent to a regular relation.

We use a temporal logic (see e.g. Pnueli [Pnu77]) to specify the desired dynamic
behaviour of our systems. We use the well-known result described by Vardi and
Wolper [VW86] to translate a temporal formula to a Büchi automaton whose
dynamic behavior is characterized by the negation of the formula. In addition,
we use regular sets and relations to represent the automata. This allows for some
properties to be parameterized by the position in the word, allowing for example
parameterized fairness conditions. It is shown how to reduce the model checking
problem, including the handling of fairness, into the calculation of a composition
of regular relations.
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This thesis also reports on an implementation of regular model checking, and
discusses the applicability of the method and the practical problems that have to
be solved to make the method efficient. Regular model checking relies on the use of
automata, and there are packages implemented for automata used in the context
of monadic second-order logic, e.g. MONA [HJJ+96] and Mosel [KMMG97]. We
have implemented an automata package for non-deterministic automata with a
more direct interface than using the monadic second-order logic, suitable for the
implementation of regular model checking. As the other packages, it uses BDDs to
represent the transition relation of the automata. While in the case of MONA and
Mosel only the alphabet part of the transition relation is reprented with BDDs, we
use BDDs to represent the states as well, allowing for some interesting techniques
for some of the operations on automata.

1.1 RELATED WORK

In recent years, there has been much effort to extend the wide range of theory and
methods for verification of finite-state systems to infinite-state systems, allowing
for queues, integers, arrays and other data structures with an infinite domain. Var-
ious approaches have been proposed. Typically, a representation for sets of states
is proposed, with algorithms to perform transformation of this representation cor-
responding to operations on sets. These representations are chosen to be able to
represent some commonly used domains in systems, such as integers and queues.
There is, however, still a lack of methods for combining all these techniques for
systems with a variety of domains combined in one system.

Regular model checking uses ideas from formal language and automata theory
to obtain a uniform way to represent these different types of systems. If this is
the most efficient way to represent systems is not known, but there is evidence,
supported by this thesis, that it can be used to uniformly represent a variety of
data structures and still be used for automated verification.

Several researchers, e.g., Boigelot and Wolper [WB98] and Kesten et al. [KMM+97],
have argued for the advantages of using regular sets as a basis for verifying infinite-
state systems. Other researchers, e.g., Fribourg and Olsén [FO97] and Sistla
[Sis97], use regular sets in a deductive framework, where basic manipulations on
regular sets are performed automatically. These methods are based on proving an
invariant given by the user or by some invariant generation technique, but are not
fully automatic.

The problem of calculating the effect of arbitrarily long sequences of transitions has
been addressed for certain classes of systems, e.g., systems with unbounded FIFO
channels [BG96, BGWW97, BH97, ABJ98], systems with pushdown stacks [BEM97,
Cau92, FWW97], systems with counters [BW94, CJ98], and certain classes of pa-
rameterized systems [ABJN99, CGJ95].
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1.2 ORGANIZATION OF THESIS

This thesis is organized as follows. In the next chapter we describe how to model
systems and how we specify properties that we would like the system to have, and
present examples that we are considering in our framework. Chapter 3 contains
the necessary definitions from formal language theory and a discussion of regular
relations and their limits. In Chapter 4 we provide a discussion of how to encode
different types of infinite-state systems into a model based on regular sets and
relations. Model checking using our framework is discussed in Chapter 5, using a
toolbox of techniques presented in Chapter 6, dealing with non-finite compositions
of regular relations. An implementation of regular model checking is described in
Chapter 7, and finally concluding remarks are given in Chapter 8.



Chapter 2

Models

By a model we will refer to a representation of a dynamic behavior using a mathe-
matical description based on sets of states and a transition relation. When model-
ing systems, we need a representation of the states in the real world. We will call
this representation configurations. A configuration may for example be the values
of some variables in a program or a representation of the content of a network.
We may choose different sets of configurations for the same system, representing
different views of the same system. The reasons for this may be that we want to
analyze different aspects of the systems, or that we want to analyze the system at
different levels of abstraction.

When analyzing systems, we look at their temporal behavior. The temporal behav-
ior of a system is how the system state changes with time. We will adopt the view
of looking at sequences of states, or configurations in our representation, where
positions in the sequence represents the time line and the content at each position
represents the configuration at that particular moment.

We introduce the basic notions for temporal behavior. Let Γ be a set of configu-
rations. A run θ over Γ is an infinite sequence of configurations from Γ. We use
Γω to denote the set of all runs over Γ.

Example 2.1 Consider a system consisting of a counter. The counter begins at
zero and increments its value by one in each time step. To model this system, we
choose as the set of configurations Γ the set of natural numbers N . A run in this
system would start at zero and increase by one at each time step, represented by
the run 0 1 2 · · · ∈ Γω. ¤

We will describe two different ways of describing systems with a particular behav-
ior. One is the use of a model, which is similar to a state machine and can be
used to model directly the systems we want to analyze. The other is the use of a
temporal logic, a logic for reasoning about the behavior itself. This logic will be
used for specification.
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2.1 MODEL

A widely used model for describing temporal behavior is a Büchi automaton, in-
troduced by Büchi.

Definition 2.2 Let Γ be a set of configurations. A Büchi automaton model M
over Γ is a tuple (ΓI ,−→, ΓF ) where

• ΓI is a subset of Γ, called the set of initial configurations, and

• −→ is a relation on Γ× Γ, called the transition relation, and

• ΓF is a subset of Γ, called the set of accepting configurations.

¤

We will use the term model to mean a Büchi automaton model. The set of initial
configurations represents the set of initial states in the system. The transition re-
lation represents the behavior of the system in one step. If a pair of configurations
is in the relation, it means that the system can make a step from the first config-
uration to the second. Following the transition relation starting from the initial
configuration we get a run of this system, defined below. The set of accepting
states is used to specify additional constraints on the runs.

Let M = (ΓI ,−→, ΓF ) be a model over Γ. A run of M is a run γ0γ1 · · · over Γ such
that γi −→ γi+1 holds for all i with i ≥ 0. An accepting run of M is a run γ0γ1 · · ·
of M such that there is a configuration γ ∈ ΓF and an infinite set of indices I
such that γi = γ for all i ∈ I. We use [[M]] to denote the set of all accepting runs
of M. When ΓF = Γ, the model behaves like an ordinary state machine.

2.2 DESCRIBING SYSTEMS

To describe systems, we use the model from the previous section where the set of
accepting states is the set of configurations. This way, all runs of the model are
accepting runs.

We usually choose a tuple of variables V = (x1, x2, . . . , xn) together with their
domains D = (D1, D2, . . . , Dn). The set of configurations Γ is then D1 × D2 ×
· · · × Dn, the cross product of the domains. We use predicates over variables to
describe sets of configurations, for example x3 = 5 describes the set D1 × D2 ×
{5} ×D4 × · · · ×Dn−1 ×Dn. To describe relations on Γ× Γ, we use an unprimed
version of the variables to represent the first component and a primed version of
the variables to represent the second component. For example, x3 = x′3 represents
the relation between configurations where the value of x3 is the same.
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Example 2.3 Consider a token ring system consisting of n processes connected
in a ring shaped network. We represent this system using a variable q ranging
over {N,T}n, the set of words of length n over the alphabet {N,T}, where N
represents a process which does not have the token and T represents a process
which has the token. For i with 1 ≤ i ≤ n, we use q[i] to denote the content of
the word q at position i. Thus, q[i] represents the state of process i, where the
processes are ordered from 0 and upwards in the order they appear in the ring.
The set of configurations is then Γ = {N,T}n.

The set of initial states ΓI is given by the set of words N iTN j such that i+j+1 = n.
The transition relation −→ is given by the relation where one process sends the
token to its neighbor which can then be represented by

∃i :

∀j < i : q′[j] = q[j]
∧

q[i] = T ∧ q′[i] = N
∧

q[i + 1] = N ∧ q′[i + 1] = T
∧

∀j > i + 1 : q′[j] = q[j]

where all arithmetic is done modulo n. The set of accepting states ΓF is set to Γ.
¤

2.3 SPECIFICATION USING TEMPORAL LOGIC

To specify behavior, we use a temporal logic. A temporal logic specify behavior
directly rather than a description of a system having a particular behavior. Thus,
using such a logic, we can more easily specify how we want the system to behave
without thinking about a particular system.

There are many different types of temporal logics. We present a version called the
propositional temporal logic and state a well-known result to translate this logic
into a model having the same behavior as a formula in this logic.

As the atomic propositions, we take predicates over the set of configurations, or
equivalently, subsets of configurations. The logic will thus be parameterized by the
set of configurations, and we will use PTL(Γ) to denote the propositional temporal
logic using subsets of Γ as atomic propositions. More formally, the logic is defined
as follows.

Definition 2.4 Let Γ be a set of configurations. The propositional temporal logic
over Γ, denoted PTL(Γ), is defined as the least set closed under the following rules:

1. 2Γ ⊆ PTL(Γ)
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2. If ϕ1, ϕ2 ∈ PTL(Γ), then ϕ1 ∨ ϕ2 ∈ PTL(Γ).

3. If ϕ ∈ PTL(Γ), then ¬ϕ ∈ PTL(Γ).

4. If ϕ ∈ PTL(Γ), then ¤ϕ ∈ PTL(Γ).

5. If ϕ ∈ PTL(Γ), then ◦ϕ ∈ PTL(Γ).

6. If ϕ1, ϕ2 ∈ PTL(Γ), then ϕ1Uϕ2 ∈ PTL(Γ).

¤

Intuitively, the formula ¤ϕ states that ϕ holds now and forever at all points in
the future, and the formula ◦ϕ that ϕ holds at the next point of the time line, and
the formula ϕ1Uϕ2 that ϕ1 holds until ϕ2 holds.

For a set Γ of configurations, each formula ϕ ∈ PTL(Γ) denotes a set [[ϕ]] of runs
over Γ, defined by the following rules:

1. [[Γ0]] is the set of runs γ0γ1 · · · ∈ Γω such that γ0 ∈ Γ0, for all Γ0 ⊆ Γ

2. [[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]].

3. [[¬ϕ]] = Γω \ [[ϕ]].

4. [[¤ϕ]] is the set of runs γ0γ1 · · · ∈ Γω such that the run γiγi+1 · · · is in [[ϕ]] for
all i ≥ 0.

5. [[◦ϕ]] is the set of runs γ0γ1 · · · ∈ Γω such that the run γ1γ2 · · · is in [[ϕ]].

6. [[ϕ1Uϕ2]] is the set of runs γ0γ1 · · · ∈ Γω such that there is an i ≥ 0 such that
γiγi+1 · · · is in [[ϕ2]] and γjγj+1 · · · is in [[ϕ1]] for all j < i.

We introduce the usual abbreviations for ∧ , ⇐⇒ , and =⇒ . Also, we introduce
the eventuality operator ♦. The formula ♦ϕ is an abbreviation for ¬¤¬ϕ, and
means at some point in the future, ϕ will hold.

There is a classical result saying that for every formula there is a model with the
same runs as the formula (see for example Büchi [Buc62] and Vardi and Wolper
[VW86]). The model simulates the behavior of the formula by observing the con-
figurations and, using a finite set of internal states, has exactly the runs that is
described by the formula. The model will be over configurations both from the
configurations of the formula and from the internal state. To formulate this result,
we need projections allowing us to talk about these two components. Let Γ,Γ′ be
sets of configurations. A projection π from Γ to Γ′ is a mapping from Γ to Γ′. We
extend projections to runs by defining π(γ0γ1 · · ·) = π(γ0)π(γ1) · · ·.



10 CHAPTER 2. MODELS

Theorem 2.5 Let Γ be a set of configurations. For every formula ϕ ∈ PTL(Γ),
there is a finite set of configurations Γ′ and a model M over Γ × Γ′ such that
π([[M]]) = [[ϕ]], where π is the projection π(γ, γ′) = γ.

Proof: See for example [VW86]. ¤

2.4 MODELING INFINITE-STATE SYSTEMS

In this section we show several examples of how to model infinite-systems. Com-
mon to all these examples are that they are amenable to encoding of their state
into words in a way such that the many sets of words that we want to use during
verification as a representation of sets of states are regular. In some cases the
encoding makes some transitions atomic in the sense that conditions that would
otherwise translate into loops that checks some conditions becomes a single atomic
check. These encodings into finite words are discussed in Chapter 4.

2.4.1 The Bakery Algorithm

In the bakery algorithm for mutual exclusion due to Lamport [Lam74], there are
an arbitrary number of processes waiting to get a “ticket” to get into the critical
section. Each process which wants to get into the critical section receives a ticket
which is the maximum of all the outstanding tickets plus one. When a process
has the lowest outstanding ticket, it enters the critical section and drops the ticket
when leaving.

To model this algorithm, we use a variable m ranging over a multiset over the set
of tuples N × {T, C} where the first component represents the ticket of a process
and the set {T, C} represents a control state where T denotes that the process is
trying to enter the critical section, and C denotes that the process is in the critical
section. Processes that are neither trying to get into or are in the critical section
are not represented in the model. We denote by max (m) the maximum value of
the tickets of all elements in m, and by min(m) the minimal value of the ticket of
all elements in m. The transition relation is then given as follows:

• The case where one process obtains a ticket is given by the relation m′ =
m ∪ {(max (m) + 1, T )}.

• The case where one process enter the critical section is given by the relation
∃i ≥ 0 : i = min(m) ∧ (i, T ) ∈ m ∧ m′ = m \ {(i, T )} ∪ {(i, C)}.

• The case where one process leaves the critical section is given by the relation
∃i ≥ 0 : (i, C) ∈ m ∧ m′ = m \ {(i, C)}.

The mutual exclusion property that states that there are never two processes in
the critical section is given by the temporal formula ¤¬(Σi≥0m((i, C))) > 1.
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2.4.2 Szymanski’s Algorithm

In the previous example there was an arbitrary number of processes, but there
was a complete symmetry between the processes. In this example we will look
at another algorithm that works for an arbitrary number of processes, but with
the difference that they will be organized in a linear array and thus will not be
completely symmetric with respect to each other.

In Szymanski’s Algorithm for mutual exclusion[Szy90, GZ98], there are an arbi-
trary number of processes organized in a linear array, where the index of the array
denotes the process ID. In the algorithm, the local state of each process i consists
of a control state pc[i], ranging over the integers from 1 to 7 and of two boolean
flags, w[i] and s[i]. A process i is in the critical section when the control state
pc[i] is equal to 7. We model this using three variables ranging over an array of
the same length as the number of processes, named pc, and w, and s. The tran-
sition relation is given by the following program for each process i, expressed in
pseudo-code where the lines are numbered with the value of the control state pc.

1: await ∀j : j 6= i : ¬s[j]
2: w[i], s[i] := true, true
3: if ∃j : j 6= i : (pc[j] 6= 1) ∧ (pc[j] 6= 2)

then s[i] := false ; goto 4
else w[i] := false ; goto 5

4: await ∃j : j 6= i : s[j] ∧ ¬w[j] then w[i], s[i] := false, true
5: await ∀j : j 6= i : ¬w[j]
6: await ∀j : j < i : ¬s[j] ∨ ¬w[j]
7: s[i] := false ; goto 1

Figure 2.1: Szymanski’s Algorithm

For instance, according to the statement at line 6, if the control state of a process
i is 6, and the value of s is false in all processes with a lower index, i.e., for all
processes j with j < i, then the control state of process i may be changed to 7.
In a similar manner, according to the statement at line 4, if the control state of a
process i is 4, and if there is at least another process j (either with a lower index
or a higher index than i) where the value of s[j] is true and the value of w[j] is
false, then the control state, w[i], and s[i], in i may be changed to 5, false, and
true, respectively.

To see how the above statements are modeled, line 1 can for example be modeled
by the following transition relation for all i with 1 ≤ i ≤ n:

pc[i] = 1 ∧ pc′[i] = 2 ∧ w′[i] = w[i] ∧ s′[i] = s[i] ∧ ∀j : j 6= i : ¬s[j]

The mutual exclusion property that states that there are never two processes in
the critical section is given by the temporal formula ¤¬∃i, j : i 6= j : (pc[i] =
7 ∧ pc[j] = 7).
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2.4.3 Dijkstra’s Algorithm

In Fig. 2.2, we show an idealized version of Dijkstra’s protocol[LPS93] for ensuring
mutual exclusion among an arbitrary number of processes. Each process i has a
control state ranging over the integers from 1 to 7 and a variable flag[i] ranging
over {0, 1, 2}. Furthermore, a global variable p ranging over process indices is used.
In the algorithm, line 6 represents the critical section.

1: flag[i] := 1
2: if p 6= i then

await flag[p] = 0 then
3: p := i
4: flag[i] := 2
5: if ∃j 6= i : flag[j] = 2 then goto 1
6: flag[i] := 0
7: goto 1

Figure 2.2: Dijkstra’s Algorithm

The mutual exclusion property that states that there are never two processes in
the critical section is given by the temporal formula ¤¬∃i, j : i 6= j : (pc[i] =
6 ∧ pc[j] = 6).

2.4.4 Burns Algorithm

Burns’s Mutual Exclusion Algorithm[LPS93] is given in Fig. 2.3. Each process i
has a control state ranging over the integers from 1 to 7 and a variable flag[i]
ranging over {0, 1}. The critical section is represented by line 6.

1: flag[i] := 0
2: if ∃j < i : flag[j] = 1 then goto 1
3: flag[i] := 1
4: if ∃j < i : flag[j] = 1 then goto 1
5: await ∀j > i : flag[j] 6= 1
6: flag[i] := 0
7: goto 1

Figure 2.3: Burns’s Algorithm

The mutual exclusion property that states that there are never two processes in
the critical section is given by the temporal formula ¤¬∃i, j : i 6= j : (pc[i] =
6 ∧ pc[j] = 6).

2.4.5 The Alternating Bit Protocol

We consider the well-known Alternating Bit Protocol[BSW69], a protocol used for
delivering messages over unbounded channels which are faulty in the sense that
they may loose messages but not reorder them.
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There are two channels, one for sending messages from the sender to the receiver,
and one for sending acknowledgements from the receiver to the sender. Each mes-
sage is given a sequence number and the sender waits for an acknowledgement from
the receiver before sending a new message. Until this acknowledgement is received,
the sender may resend the message. When the receiver has acknowledged the mes-
sage, the procedure is repeated but with the sequence number inverted. Both the
sender and the receiver ignore messages with unexpected sequence numbers.

To model the protocol, we consider two operations send and receive, modeling
calls from the upper layers of the protocols. Thus, send denotes that there is
a new message from the sender side, and receive denotes that the receiver side
signals that a message has been received. We denote the two channels cM and
cA , where cM is the channel used for messages and cA is the channel used for
acknowledgements. We denote by c!v the operation of sending or acknowledging
a message with sequence number v to the channel c, and by c?v the operation
of receiving a message or acknowledgement of a message with sequence number v
from channel c.

The code for the sender and the receiver is given below. The notion SORS′ means
that either S or S′ is executed, but not both of them.

Sender Receiver

1: send
2: (cM !0, cA?1, goto 2) OR cA?0
3: send
4: (cM !1, cA?0, goto 4) OR cA?1
5: goto 1

1: (cM?1, cA!1, goto 1) OR cM?0
2: receive
3: (cM?0, cA!0, goto 3) OR cM?1
4: receive
5: goto 1

One property of the algorithm states that the operations send and receive alter-
nates after each other such that the two operations never occur consecutively. A
temporal formula for this is

send ∧ ¤(send =⇒ ¬sendUreceive) ∧ ¤(receive =⇒ ¬receiveUsend)

2.4.6 The Sliding Window Protocol

In a sliding window protocol (for a general description on sliding window protocols,
see e.g. [Tan96] ch. 3), there are two processes sending messages over a channel.
The channel is not perfect, but can lose messages at any time. The goal of the
protocol is to receive the messages in order. To accomplish this, a sequence number
is assigned to each message that is sent. The numbers are taken from a sending
window consisting of a range of sequence numbers which defines the set of messages
that is currently being sent but which have not yet been acknowledged. As the
receiver acknowledges the messages, the sending window is decreased. The sender
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may send new messages and thus increasing the sending window, but only up to
the sending window limit, defining the maximal size of the window.

To model this algorithm, we use three integer variables: low and high defining the
current sending window, and next defining the sequence number of the next mes-
sage to receive. We denote the sending window limit by max, and use a variable c
ranging over the set of sequences of integers to model the channel. The integers de-
note the sequence numbers of the messages in the channel. The acknowledgements
are not modeled, but are assumed to happen sychronously between the receiver
and the sender.

The transition relation is given by the union of the following transitions, where all
operations on the integers are assumed to be modulo max.

• (enlarge window) if low 6= high + 1 then high := high + 1

• (send) ∀n : low ≤ n < high : send(n)

• (receive) receive(next), next := next + 1

• (synchronous ack) low := next

A formula stating that the receiver is never outside the sending window is ¤low ≤
next ≤ high.

2.4.7 A Termination Detection Algorithm

We describe an algorithm for termination detection among an arbitrary number of
processes organized in a ring shaped network, found in Dijkstra et. al [DFvG83].
The algorithm uses a colored token which is passed around the ring to check that
all processes in the ring have terminated.

A process can either be non-idle or idle. When all processes are idle, we say
that the system has terminated. A process can spontaneously change its state
from non-idle to idle, i.e., it terminates. To detect that all processes are idle, a
designated processes sends out a token which it colors white. When the token is
passed to the next processes, the process passing the token paints it black if it is
non-idle. When the token comes back to the process which sent out the token, it
is white if the system has terminated, and black otherwise.

The system can be modeled by numbering the processes from 1 to n and using three
arrays holding three local variables the processes. Only process 1 may initiate the
algorithm by sending out a new token. The three variables are q[i] which is true
iff process i is idle, t[i] ranging over {black,white,none}, which has the value
none when process i does not have the token, and otherwise denotes the color of
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the token. In addition, process 1 has a boolean variable w, which is true if it has
stayed idle during the current round. The value of w is only relevant for process
1.

Initially, we have q[i] = false for all i, and t0 = black, and t[i] = none for all
1 ≤ i < N , and w = false. The algorithm can be described by a union of the
following transitions, for each process i:

• q[i] := true

• if i > 1 ∧ ¬q[i− 1] then q[i] := false

• if ¬qn then q[1], w := false, false

• if i = 1 ∧ q[1] ∧ (t[1] = black ∨ ¬w) then t[1], t[2], w := none,white, true

• if i < n ∧ t[i] 6= none ∧ q[i] then t[i], t[i + 1] := none, t[i]

• if i < n ∧ t[i] 6= none ∧ ¬q[i] then t[i], t[i + 1] := none,black

• if i = n ∧ t[n] 6= none ∧ ¬q[n] then t[n], t[1] := none,black

The three first types of statements describe the underlying computation: A pro-
cess can become idle autonomously (first statement), it can become non-idle if its
predecessor is non-idle. In addition (third statement), process 1 must set w to
false if it becomes non-idle. The fourth statement starts a round of the detection
algorithm, In the next statement, a process just forwards the token if it is idle. If
the process is non-idle, then the token is painted black and then forwarded.

The correctness of the protocol can be stated as ¤(t[1] = white ∧ w) =⇒ ∀i : q[i],
saying that if process 1 signals termination, then all processes are idle.



Chapter 3

Regular Relations

Regular model checking is based on formal languages and automata. In this chap-
ter, we introduce the basic notions of formal language theory and introduce the
concept of regular relations.

3.1 REGULAR LANGUAGES AND AUTOMATA

We introduce the notion used for regular languages and automata.

Languages Let Σ be a finite set, called the alphabet. A finite word w over Σ is
a finite sequence of symbols from Σ. We use |w| to denote the length of w. We
use Σ∗ to denote the set of finite words over Σ. A language L over Σ is a subset
of Σ∗.

Automata A finite automaton A over Σ is a tuple (Q,S,∆, F ) where Q is a finite
set of states, S ⊆ Q is a finite set of initial states, ∆ : Q × Σ × Q is a transition
relation, and F ⊆ Q is a finite set of accepting states. We lift ∆ to words such that
∆(q, a1a2 · · · an, q′) holds iff there are states q0, q1, . . . , qn with q = q0, and q′ = qn,
and ∆(qi−1, ai, qi) for all i with 1 ≤ i ≤ n. For a set of states Q0 ⊆ Q, the image
∆(Q0, w) is defined as the set of states q′ ∈ Q such that ∆(q, w, q′) holds for some
state q ∈ Q0. For a state q ∈ Q, the set of prefixes of q, denoted pref(q), is defined
as the set of words w such that q ∈ ∆(S,w), and the set of suffixes of q, denoted
suff(q), is defined as the set of words w such that ∆(q, w) ∩ F 6= ∅. For a set of
states Q0 ⊆ Q, the set of prefixes pref(Q0) is defined as the union of all sets pref(q)
where q ∈ Q0, and the set of suffixes suff(Q0) is defined as the union of all sets
suff(q) where q ∈ Q0. The language recognized by A, denoted L(A), is defined as
the set suff(S) of suffixes of the set of initial states. A language L is regular iff it
is recognized by some automaton.
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3.2 REGULAR RELATIONS

Regular model checking is based on regular relations, which will be used to repre-
sent the transition relations. They are recognized by automata in a similar way as
regular sets are recognized by automata. Let us explain this idea more precisely.

Let Σ1,Σ2, . . . , Σm be finite alphabets. For words aj
1 ·aj

2 · · · aj
n ∈ Σn

j of equal length
n for j with 1 ≤ j ≤ m, their cross product1

a1
1 · a1

2 · · · a1
n × a2

1 · a2
2 · · · a2

n × · · · × am
1 · am

2 · · · am
n

is defined as the word

(a1
1, a

2
1, . . . , a

m
1 ) · (a1

2, a
2
2, . . . , a

m
n ) · · · (a1

n, a2
n, . . . , am

n ).

over the alphabet Σ1 × Σ2 × · · · × Σm.

A language consisting of cross products denotes a relation in the following way.
For a language L over Σ1 × Σ2 × · · ·Σm, we denote by [L] the relation consisting
of the set of tuples (w1, w2, . . . , wm) such that w1 × w2 × · · · × wm is in L. Note
that for n = 1, we have that L equals [L].

Relations that can be represented by a regular language in this way are called
regular.

Definition 3.1 Let Σ1, Σ2, . . . ,Σm be finite alphabets. A relation R ⊆ Σ∗1×Σ∗2×
· · ·×Σ∗m of arity m is regular if there is a regular language L over Σ1×Σ2×· · ·×Σm

such that [L] = R. ¤

Compositionality For two regular relations R and R′ of equal arity, we define
their concatenation R · R′ as the regular relation [L · L′] denoted by the concate-
nation of the languages L and L such that R = [L] and R′ = [L′]. Their union is
denoted by R ∪ R′ and their intersection by R ∩ R′. Regular relations are closed
under union and intersection.

Theorem 3.2 Let R and R′ be regular relations of arity k. Then R ∪ R′ and
R ∩ R′ are regular.

Proof: We prove that [L] ∪ [L′] = [L ∪ L′] for two languages L and L′ such
that R = [L] and R′ = [L′]. Let (w1, w2, . . . , wk) ∈ [L ∪ L′]. This holds iff
w1 × w2 × · · · × wk is in L or L′ which is true iff (w1, w2, . . . , wk) is in [L] or [L′],
i.e., [L] ∪ [L′]. The case for intersection can be proved similarly. ¤

1The term “cross product” for finite words is taken from [KMM+97]
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For two relations R of arity m and R′ of arity m′, we define their length-preserving
cross product R×R′ as the set of tuples (w1, w2, . . . , wm, w′1, w

′
2, . . . , w

′
m′) such that

all words w1, w2, . . . , wm, w′1, w
′
2, . . . , w

′
m′ are of the same length and (w1, w2, . . . , wm)

is in R and (w′1, w
′
2, . . . , w

′
m′) is in R′. For a relation R of arity m, the projection

π(i1,i2,...,ik)(R) on R on a tuple of indices (i1, i2, . . . , ik) ∈ {1, 2, . . . , m}k is defined
as the relation of arity m consisting of the set of tuples (wi1 , wi2 , . . . , wik) such
that there exist a tuple (w1, w2, . . . , wm) in R. Regular relations are closed under
these operations.

Theorem 3.3 Let R be a regular relation of arity m and let R′ be a regular relation
of arity m′. Then the following relations are regular

1. R×R′

2. π(i1,i2,...,ik)(R), for all k and (i1, i2, . . . , ik) ∈ {1, 2, . . . , n}k.

Proof: To see (1), consider taking the intersection of the two automata representing
R and R′, where elements of the two relations are disjoint. It is not hard to see
that the resulting automaton will only accept words in the cross product that have
the same length.

For (2), apply projection on the transition relation of the automaton (which is
finite). ¤

We will be particularly interested in binary regular relations, since they will be used
to represent the transition relations in our programs. The relational composition
of binary regular relations is important because it is used to reason about the
progress of time of a system. If R represents a transition relation in one step in
a program, then R ◦ R represents the transition from one state to another state
in two steps. Binary regular relations are closed under the relational composition
operator ◦.

Theorem 3.4 Let R and R′ be binary regular relations on Σ. Then their relational
composition R ◦R′ is regular.

Proof: R ◦R′ = π(1,3)(R×Σ∗ ∩ Σ∗×R′) ¤

For a regular language L, we use IdL to denote the regular identity relation re-
stricted to L, i.e., the set of pairs (w, w) such that w ∈ L. For a regular relation
R and a regular language L, we note that the image of R(L) under L is regular
since R(L) is the regular relation π(2)(IdL ◦R).

For a regular relation R, the transitive closure of R is denoted by R+ and the
reflexive and transitive closure of R is denoted by R∗. If R represents a transition
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relation in a program, then R∗ represents transitions from one state to another in
zero or more steps. Regular relations are not closed under this operation.

Theorem 3.5 There is a regular relation R such that R∗ is not regular.

Proof: There are many possible counter examples of which perhaps the simplest is
that the transition relation of a Turing machine can be encoded as a regular rela-
tion. We describe one counter example based on having to match the number of oc-
curences of two symbols. Let Σ = {a, b} and R = [((a, a) + (b, b))∗(a, b)(b, a)((a, a) + (b, b))∗] =
{(wabw′, wbaw′) : w, w′ ∈ Σ} be a regular relation on Σ∗ × Σ∗. If R∗ is reg-
ular, then the image R∗(L) under the regular language L = (ab)∗ is regular.
Let #c(L′) denote the number of occurrences of the symbol c in the language
L′. For a language L′, the relation R preserves the number of a’s and b’s, i.e.,
#a(L′) = #a(R(L′)) and #b(L′) = #b(R(L′)). Further, we have #a(L) = #b(L).
Now consider the language Li denoting the left quotient of i number of a in the
image R∗(L), defined as the set of words w such that aiw ∈ R∗(L). We have that
#b(w) = #a(w) + n. It is easy to see that each Li is non-empty and it follows
that each Li is a different language. Thus, R∗ is not regular. ¤

The above result is not surprising, since regular relations can be used to represent
for example the transition relation of a Turing machine. Relational compositions
of regular relations will still be used, however, as a basis for our theory. In Sec-
tion 6, we present a semi algorithm for computing an automaton recognizing a
composition built up from ∪ , ◦, and ∗.



Chapter 4

Regular Models

We have shown how to use a model to describe a variety of different classes of
infinite-state systems. To perform automated verification, we will translate these
models into a model called regular model. This translation from various classes of
models into the regular model is what makes regular model checking a unifying
framework.

Definition 4.1 Let Σ be an alphabet. A regular model over Σ is a model (ΓI ,−→
, ΓF ) over Σ∗ where ΓI , −→, and ΓF are regular. ¤

In a regular model, the sets and the relations are regular. Thus, they can be
represented by a finite-state automaton which we will use for the algorithms that
perform the verification.

To transform a model into a regular model, one chooses a representation of the
system state such that each state of the system is represented as a word over some
alphabet. The initial set of states is formulated as a regular set over this alphabet,
and the transition relation as a regular relation on this alphabet. One must be
careful to choose the representation such that the initial set of states is regular.
For example, suppose that we want to represent two integer variables x and y using
the alphabet Σ = {x, y}, and that we choose to represent a state where x = n and
y = m with the word xnym. Then we can not represent the set of states where
x = y, because the set {xnyn : n ≥ 0} is not regular. If, however, we choose to
represent the two integer variables using two boolean variables bx and by yielding
the alphabet Σ = {true, false}×{true, false}, the cross product of the domains of
bx and by, and to represent a state where x = n and y = m with the word w such
that the symbol at position i is in bx = true iff n = i and in by = true if m = i,
then the set of words representing x = y is regular, namely the set given by the
regular expression (¬bx ∧ ¬by)∗ · (bx ∧ by) · (¬bx ∧ ¬by)∗.

In this chapter, we discuss the translation from models to a regular models. The
ability to perform automatic verification is largely dependent on how we make this
translation.
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In Sect. 2.4, we showed several examples of infinite-state systems. We will discuss
general principles for deriving regular models from the following types of systems,
which occur in the examples:

• Parameterized Systems An arbitrary number of homogeneous processes
possibly organized in some topology.

• Integer Variables Variables ranging over the natural numbers, which is an
infinite domain.

• Queues Queues between processes, modeling for example communication
links.

4.1 PARAMETERIZED SYSTEMS

Consider a system parameterized by the number of processes. Typical examples
are algorithms designed to work for an arbitrary number of processes. In this case,
we want to verify the system regardless of the number of processes.

We assume that all processes are homogeneous, i.e., all processes have the same
set of states Q. Using our representation, we can represent parameterized systems
in which the processes are ordered in a linear array. As the alphabet, we take the
set of states for each process, i.e., Σ = Q. Each word a1a2 · · · an ∈ Σ∗ is then
used to represent a state where process at position i is in state ai for all i with
1 ≤ i ≤ n.

Local transitions not depending on the other processes can be represented by the
regular relation IdQ∗ · [(q, q′)] · IdQ∗ where a process can make a transition from q
to q′. Other transitions need global conditions, for example that all processes at a
position with a lower index should be in a particular state, say qg. If the processes
are ordered in our representation such that a process with index i is represented
by the symbol at position i in the word, then we can represent such a transition
by the regular relation Idq∗g · [(q, q′)] · IdQ∗ , where a process can make a transition
from q to q′.

Let us illustrate this type of representation using the token ring example. Each
process can be in one of two states, N or T , where N denotes that the process
does not have the token, and T denotes that the process has the token. As the
set of configurations Γ we take the set {N, T}∗ and use TN∗ as the set of initial
configurations, in which the leftmost process has the token, and as the transition
relation we take

IdN∗ · [(T, N) · (N, T )] · IdN∗ ∪ IdN∗ · Id{N,T} · IdN∗ ,

the union of two relations, of which the first denotes the passing of the token from
a process to its right neighbor, and the second denotes an idling computation step.
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Note that the transition relation is implicitly constrained by the invariant that
there is exactly one token in the system. To model a ring, we have to handle the
case where the process with the highest index passes the token to the process with
the lowest process, connecting the ring. The transition relation handling this case
can be given as

[(N, T )] · IdN∗ · [(T,N)]

4.2 INTEGER VARIABLES

Consider a system with integer variables x1, x2, . . . , xn. To model this as a regular
model, we associate with each integer variable xi a boolean variable bi. As the
alphabet we take the set Σ = {true, false}n. Each state is represented by a word
over Σ such that the boolean variable bi is true at position j iff xi = j.

This way of representing integer variables is used by MONA [HJJ+96] when trans-
lating monadic second order logic into automata. The variables of this logic ac-
tually range over the finite subsets of natural numbers. In terms of our notation,
using a boolean variable b, we would represent a subset of natural numbers with
a word of length n where i is in the set iff i < n and b is true at position i. Note
that since we are representing a finite subset we can always find an word that is
long enough to represent the subset we are interested in.

Using this representation, we can represent various constraints on the integer vari-
ables. For example, for two variables x and y, we can represent x < y, x ≤ y, and
x = y + c for any constant c.

The operation x := y + c can be represented by the regular relation
[
(y = y′)∗

] ∩ [
(¬x′ ∧ ¬y)∗ · (¬x′ ∧ y) · (¬x′ ∧ ¬y)c−1 · (x′ ∧ ¬y) · (¬x′ ∧ ¬y)∗

]

4.3 QUEUES

Consider a system with a queue containing a set of messages M , where M∗ rep-
resents the queue content as the set of configurations. Since regular relations are
length preserving, we have to add a padding symbol ⊥ to handle operations that
change the length of the queue. The symbol ⊥ represents an empty slot that can
be filled in when for example a message is sent to the queue. Similarly, a message
that is received from the queue is converted back to ⊥.

Suppose that we want to represent a system consisting of a finite control and a
FIFO queue. Let Q denote a finite set of control states and M denote a finite set
of messages in the queue. As the alphabet, we take the union of the set of control
states and the set of messages, and add a symbol ⊥ to represent an empty slot,
i.e., the alphabet is Σ = Q ∪ (M ∪ {⊥}). Each state in the system is represented
by a word in Q⊥∗M∗⊥∗ where the first position represent the control state and
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where the rest of the word represents the content of the queue. The symbol ⊥
represents empty slots and is used to allow the queue to grow and shrink. Note
that each configuration is of a certain length and thus represents a system with a
fixed number of positions available for the queue. When performing verification,
however, we will verify the system for all the possible lengths. Thus, even if some
transition can “get stuck” because there is no empty slot to fill in, there will
always be an instance with a larger number of positions where there is an empty
slot available.

To send a message m ∈ M when in a control state q ∈ Q, we use the regular
relation [(q, q)] · Id⊥∗ · IdM∗ · [(⊥,m)] · Id⊥∗ . To receive a message m ∈ M when in
a control state q ∈ Q, we use the regular relation [(q, q)]·Id⊥∗ ·[(m,⊥)]·IdM∗ ·Id⊥∗ .

4.4 STACKS

Stacks can be modeled in a similar way as queues. Let Q denote a finite set of
control states and let M denote the set of stack contents. As the alphabet, we
take Σ = Q ∪ (M ∪ {⊥}) where ⊥ is a symbol used to represent empty slots.
A state of the system is then represented by a word in Q ·M∗ · ⊥∗ where the first
position is used to represent the control state, and the rest of the word is used to
represent the contents of the stack.

Pushing m on the stack while in control state q can be represented by the regular
relation [(q, q)] · IdM∗ · [(⊥,m)] · Id⊥∗ and popping m off the stack while in control
state q can be represented by the regular relation [(q, q)] · IdM∗ · [(m,⊥)] · Id⊥∗ .



Chapter 5

Model Checking

To model check a system, we take a model of the system and a specification and
check that all behaviors of the model are behaviors of the specification. In this
chapter, we will explain how to automate this process in the case of a regular
model. We will reduce the problem into a problem of checking emptiness of an
expression over regular relations, a problem discussed in Chapter 6.

5.1 THE MODEL CHECKING PROBLEM

We begin by defining the model checking problem.

Instance: A set of configurations Γ, a model M over Γ, and a temporal formula
ϕ ∈ PTL(Γ) over Γ.

Question: M |= ϕ?

We begin with the case that ϕ is a safety property, in which case we solve this prob-
lem using reachability analysis, checking whether a model can reach a particular
configuration. Then we present a method for the general case.

Let Γ be a set of configurations and let ϕ ∈ PTL(Γ) be a safety property. Since ϕ
is a safety property, there is a model Mϕ over Γ×Γ′ for a set of configurations Γ′

such that π([[Mϕ]]) = [[ϕ]] where π is the projection defined by π(γ, γ′) = γ, and a
set of configurations Γ0 ⊆ Γ× Γ′ such that [[ϕ]] = π(Γ0

ω). Thus, to check for runs
of ϕ we can check for runs of Mϕ only visiting configurations in Γ0. We can think
of Γ0 being configurations which are good and the rest begin configurations which
are bad. Let M = (ΓI ,−→, ΓF ) be a model over Γ and suppose that we want to
check whether M |= ϕ. We assume that ΓF = Γ, which is true in a simple model
without fairness conditions. Let M′ be the model over Γ×Γ′ obtained from M in
such a way that it functions like M except that it ignores the second component
from Γ′. We know that [[ϕ]] equals π(Γ0

ω), and therefore, if we can calculate the
set of configurations reachable byM′, i.e. configurations that can occur in any run
of M′, we can establish whether M |= ϕ by checking if this set is a subset of Γ0.
The set of reachable configurations of M can be written as the image −→∗ (ΓI),
and can be calculated in many ways.
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Reachability Analysis A naive reachability analysis works as follows. A set of
configurations is maintained, initialized to the set of initial configurations. Iter-
atively, we add new configurations to this set by applying the transition relation
to the set of configurations we have reached so far. This process goes on until no
new configuration is found.

Let us illustrate reachability analysis with the token ring example. The initial
set of configurations in this system is given by the regular expression T · N∗,
which is the set we start with. Let −→ denote the relation between configurations
such that one process passes the token to the right. Applying this relation to
our set of configurations gives us the set −→ (T · N∗) = N · T · N∗, which is
added to the current set of configurations. After m iterations, we get the set
{N l1 · T ·N l2 : 0 ≤ l1 ≤ m ∧ l2 ≥ 0}. Clearly, in this case the analysis will not
terminate, since this set is different for every m.

There are several strategies to make the reachability analysis terminate, by enhanc-
ing the analysis with transition relations that correspond to applying transitions
several times, thus reaching the set of reachable states more quickly. These types
of transition relations are called meta transitions by Boigelot [Boi98] and is defined
as any transition relation which is a subset of the transitive closure of the tran-
sition relation defining the program. Thus, such a transition represent a subset
of the reachability relation between the states. Thus, when applying such a meta
transition in the reachability analysis we can only get reachable states, with the
difference that it may take fewer iterations of the analysis to reach a particular
state. In the example with token ring, a meta transition that could be added is
the transitive closure −→∗, which corresponds to passing the token to the right an
arbitrary number of times.

Computing the image −→∗ (ΓI) directly is sometimes not feasible. The relation
−→, however, is often a union of several relations, each representing some operation
in the system. Suppose that there are relations −→1,−→2, . . . ,−→n such that
−→=

⋃

1≤i≤n

−→i. We can then choose to perform the reachability analysis by,

instead of applying −→∗, applying −→∗
i for some i with 1 ≤ i ≤ n. At each

iteration, we choose a different i. Hopefully, the relations −→∗
i are easier deal with

than −→∗.

Another approach is to encode the reachability analysis into a composition of
regular relations and check for emptiness. Using ΓI to denote the set of initial
configurations, −→ to denote the transition relation, and Γb to denote a set of bad
configurations that we want to check if we can reach, the following composition is
nonempty iff Γb can be reached:

IdΓI◦ −→∗ ◦IdΓb



26 CHAPTER 5. MODEL CHECKING

Common to all these approaches is that they involve a computation of non-finite
compositions of relations. This is a topic that we will discuss in Chapter 6, where
a semi-algorithm is given, computing an automaton representing a (possibly non-
finite) composition of regular relations.

There is another approch for improving reachability analysis that works by after
a few iterations looking at the sequence of sets of configurations obtained in each
iteration and trying to guess the limit. This can be referred to as widening-based
techniques, named after a technique called widening used in abstract interpretation
[CC77], and was presented in [BJNT00] but is not a part of this thesis.

5.2 MODEL CHECKING GENERAL PROPERTIES

With the case for safety properties in mind, we now turn to the general case.
Suppose that we want to check whether M |= ϕ for a model M and a property
ϕ. We can equivalently check the emptiness of the set [[M]] ∩ [[¬ϕ]]. We saw in
Chapter 2 that for every temporal formula there is a model with the same set of
runs except for an extra component added to the set of configurations used for
the translation. Thus the problem becomes a problem of checking intersections of
runs of models.

Instance: A set of configurations Γ and a set of models {Mi}i∈I .

Question:
⋂

i∈I

[[Mi]] = ∅?

To illustrate this reduction, suppose that we have a model M and a property ϕ
over a set of configurations Γ and that we like to verify that M |= ϕ. Using
Theorem 2.5, we obtain a model Mϕ over Γ×Γ′ for a set of configurations Γ′ such
that π([[Mϕ]]) = [[ϕ]] where π is the projection defined by π(γ, γ′) = γ. Then we
can check whether the set [[M]] ∩ π([[Mϕ]]) is empty. As noted in the previous
section, the modelM can be extended to a model over Γ×Γ′ by ignoring the second
component. For an extended M, we have to check whether the set [[M]] ∩ [[Mϕ]]
is empty.

LetM1 andM2 be two models over a set of configurations Γ. To check whether the
set [[M1]] ∩ [[M2]] of runs is empty we need to find runs belonging to both M1 and
M2. A new model M can created with the property that [[M]] = [[M1]] ∩ [[M2]],
an example of this is given later in this section. Then we use the observation that
the transition relation of a model is length preserving, which means that the set
of configurations occurring in a run of a program will be finite. This implies that
checking for runs of a model reduces to checking for loops.

Theorem 5.1 Let M = (ΓI ,−→,ΓF ) be a regular model over a set of configu-
rations Γ over a finite alphabet Σ. Then there is a run θ ∈ [[M]] iff there is a
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sequence γ0γ1 · · · γm · · · γm′ such that γm = γm′ ∈ ΓF and (γj , γj+1) ∈−→ for all
j < m′.

Proof: Let θ ∈ [[M]] be an accepting run (where configurations are of equal length,
say n). Since the set of configurations over Σ of length n is finite, there must be
some m,m′ with m′ > m such that γm = γm′ .

Conversely, let γ0γ1 · · · γm · · · γm′ be a sequence of configurations from Γ such that
γm = γm′ ∈ ΓF and (γi, γi+1) ∈−→ for all i < m′. It follows that
γ0γ1 · · · γmγm+1γm+2 · · · γm′γm+1γm+2 · · · γm′ · · · is in [[M]]. ¤

Using the above theorem, we can check whether the set [[M]] of runs is empty
by looking for loops in M containing a reachable configuration that is in the set
of accepting configurations. In the case of a safety property, the set of accepting
configurations is the set of configurations where some bad configuration has been
seen. Thus, for safety properties, we are looking for loops in the model where a
reachable bad configuration has occurred.

The problem of finding loops can be reduced checking the emptiness of a composi-
tion of regular relations as follows. For a model (ΓI ,−→, ΓF ), the set of loops be-
ginning and ending in a reachable state is given by the relation Id−→∗(ΓI) ∩ −→+,
containing pairs containing the same configuration and where there is a path of at
least length one from the configuration back to itself.

Using this method on a model M1 = (ΓI
1,−→1, Γ) representing the system where

the set of accepting configurations is the set of all configurations, and a model
M2 = (ΓI

1,−→2,ΓF
2 ) representing a property, we can check for loops that are in

both models by checking emptiness of the relation

Id(−→1 ∩ −→2)∗(ΓI
1 ∩ ΓI

2) ∩ ΓF
2
∩ (−→1 ∩ −→2)+

5.3 FAIRNESS

When verifying protocols, one wants to add fairness conditions constraining the
possible runs in a system. Fairness conditions are assumptions on the dynamic
behavior of a system. One example of a fairness condition is a condition stating
that no process can idle indefinitely. This is normally true because there is a
scheduler in the system that does not let any process starve.

Fairness conditions are handled by stating the condition as a property ϕf such
that the property holds for desirable runs. Then instead of checking M |= ϕ for a
property ϕ and a model M, the condition M |= ϕf =⇒ ϕ is checked. This says
that for all runs of M, if ϕf holds for this run, then ϕ is true. If ϕf is not true,
we do not care since we assume that the system can not have such a run.
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5.4 PARAMETERIZED PROPERTIES

Properties are specified using models with regular relations and regular sets, which
makes it possible to handle a parameterized number of properties, for some con-
ditions.

Let ϕi be a property parameterized by i. These properties can be encoded into
another property as follows. We associate with each position i in the configurations
an observer variable b which is set to true when the program reaches a configuration
in the set of accepting configurations for ϕi. When b is true is all positions it is
set to false again in all positions. The set of accepting configurations is then a
configuration where b is true at all positions.



Chapter 6

Regular Compositions

In this chapter, we investigate compositions of regular relations including the re-
flexive and transitive closure operator ∗. To reason about programs, we want to
reason about its dynamic behavior, and this is related to the relational composition
of relations. We give a method to compute an automaton recognizing a composi-
tion called a regular composition of a given set of relations. Regular compositions
can encode the verification problems we are interested in, including reachability
analysis and the general model checking problem. This includes the reflexive and
transitive closure R∗ of a regular relation R. It was noted in Chapter 3 that there
are regular relations R such that R∗ is not regular. Thus, our method is in general
incomplete.

6.1 COLUMN TRANSDUCER

A regular relation can be represented by an automaton over pairs of an alphabet.
Such an automaton is commonly referred to as a transducer, which is the term
we will use in this chapter. Our idea is based on the observation that each set of
states of a transducer represents a regular relation, given by the set of suffixes of
this state. Thus, we can identify regular relations by states in a transducer. We
will define operations on states that correspond to the operations ∪ , ◦ and ∗ on
relations. We begin with the union operation.

Theorem 6.1 Let A = (Q,S,∆, F ) be a transducer over Σ×Σ for some alphabet
Σ. Then for all Q0, Q1 ⊆ Q, [suff(Q0)] ∪ [suff(Q1)] = [suff(Q0 ∪ Q1)].

Proof: Follows directly from the definition of suff() and []. ¤

Thus, we can use union of subsets of transducer states to represent the union of
regular relations. We will extend this idea to ◦ and ∗, by considering sequences of
transducer states.

Let us first explore what it means that a pair of words (w, w′) is in the re-
lation [suff(q)] for a state q. Let A = (Q,S,∆, F ) be a transducer. For a
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state q ∈ Q, a pair of words (w,w′) is in [suff(q)] iff there is a run q0q1 · · · qn

of A whose first state is q and whose final state is in F , accepting the word

w × w′ = (a1, a
′
1)(a2, a

′
2) · · · (an, a′n). If we let q

(a,a′)
−−−−−−−−−−→ q′ denote that

∆(q, (a, a′), q′) holds, we can depict this run below where q0 = q and qn ∈ F

q0

(a1,a′1)

−−−−−−−−−−→ q1

(a2,a′2)

−−−−−−−−−−→ · · ·
(an,a′n)

−−−−−−−−−−→ qn

Now consider a sequence of states q1q2 · · · qm ∈ Q∗ of length m. We want to use
this sequence to represent the relation

[
suff(q1)

] ◦ [
suff(q2)

] ◦ · · · ◦ [suff(qm)]. Let
us explore what is means for a pair of words to be in this relation. A pair of words
(w, w′) is in

[
suff(q1)

]◦[
suff(q2)

]◦· · ·◦ [suff(qm)] iff there are words w0, w1, . . . , wm

such that w = w0, w′ = wm, and (wj−1, wj) ∈ [
suff(qj)

]
for all i with 0 < j ≤ m.

Let wi be the word aj
1a

j
2 · · · aj

n of length n. Then (wj−1, wj) ∈ [suff(qj)] means
that there is a run qj

0q
j
1 · · · qj

n of A where the first state qj
0 is qj and the last state

qj
n is in F , accepting the word (aj−1

1 , aj
1) (aj−1

2 , aj
2) · · · (aj−1

n , aj
n). These runs can

be organized into a matrix as follows:

q1
0

(a0
1,a1

1)

−−−−−−−−−−→ q1
1

(a0
2,a1

2)

−−−−−−−−−−→ q1
2 · · · q1

n−1

(a0
n,a1

n)
−−−−−−−−−−→ q1

n

q2
0

(a1
1,a2

1)

−−−−−−−−−−→ q2
1

(a1
2,a2

2)

−−−−−−−−−−→ q2
2 · · · q2

n−1

(a1
n,a2

n)
−−−−−−−−−−→ q2

n
...

...
...

qm
0

(am−1
1 ,am

1 )

−−−−−−−−−−→ qm
1

(am−1
2 ,am

2 )

−−−−−−−−−−→ qm
2 · · · qm

n−1

(am−1
n ,am

n )
−−−−−−−−−−→ qm

n

with m rows, where each row shows a run of A with n transitions.

Let us illustrate this with the token ring example. Let Σ = {N,T} be the alphabet
and let A = ({q0, q1, q2}, {q0}, ∆t, {q2}) be an automaton over Σ× Σ where

∆t = {(q0, (N, N), q0), (q0, (T,N), q1), (q1, (N,T ), q2), (q2, (N, N), q2)},
denoting the automaton depicted below, representing the transition relation where
the token is passed to the right.

½¼

¾»

½¼

¾»

½¼

¾»
q0 q1 q2µ´

¶³?
-〈T,N〉 -〈N, T 〉

¾

½

»

¼

〈N, N〉

»

¼

¾

½

〈N, N〉

The matrix representing runs where the token is passed from the left to the right
m times is given as follows.



6.1. COLUMN TRANSDUCER 31

q0

(T,N)
−−→ q1

(N,T )
−−→ q2

(N,N)
−−→ q2 · · · q2

(N,N)
−−→ q2

(N,N)
−−→ q2

q0

(N,N)
−−→ q0

(T,N)
−−→ q1

(N,T )
−−→ q2 · · · q2

(N,N)
−−→ q2

(N,N)
−−→ q2

...
...

...
...

...

q0

(N,N)
−−→ q0

(N,N)
−−→ q0

(N,N)
−−→ q0 · · · q1

(N,T )
−−→ q2

(N,N)
−−→ q2

q0

(N,N)
−−→ q0

(N,N)
−−→ q0

(N,N)
−−→ q0 · · · q0

(T,N)
−−→ q1

(N,T )
−−→ q2

Now, we observe that the columns of the above matrix can be seen as states in
another automaton where the transition relation is given by a relation between
columns. A run of this new automaton for the token ring example is given below,
where we have pointed out the leftmost column to be the initial state, the rightmost
column to be the final state, and the transition relation to be a relation between
to columns.

N N · · · N N · · · N T · · · N

q0 → q0 → q0 → · · · → q0 → q0 → q0 → · · · → q0 → q1 → q2 → · · · → q2 → q2

N N · · · N N · · · T N · · · N

q0 → q0 → q0 → · · · → q0 → q0 → q0 → · · · → q1 → q2 → q2 → · · · → q2 → q2

.

..
.
..

.

..
· · · .

..
.
..

.

..
· · · .

..
.
..

.

..
· · · .

..
.
..

q0 → q0 → q0 → · · · → q0 → q0 → q1 → · · · → q2 → q2 → q2 → · · · → q2 → q2

N N · · · N T · · · N N · · · N

q0 → q0 → q0 → · · · → q0 → q1 → q2 → · · · → q2 → q2 → q2 → · · · → q2 → q2

N N · · · T N · · · N N · · · N®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª

®

­

©

ª¡¡
¡¡
¡¡
¡¡
¡¡
¡¡
¡¡

Initial state

6

State

6

Transition

6

Final state

6

In this new automaton, we see that to represent the relation
[
suff(q1)

]◦[
suff(q2)

]◦
· · · ◦ [suff(qm)] , we can use the sequence q1q2 · · · qm which denotes a column in
the automaton such that suff(q1q2 · · · qm) =

[
suff(q1)

] ◦ [
suff(q2)

] ◦ · · · ◦ [suff(qm)].
This means that we can now represent the operator ◦ by using the concatenation
operator on sequences of states. By generalizing this new automaton to have states
that are sequences of arbitrary length, we can also handle the operator ∗.

Let us define what we mean by this new automaton more precisely. For a trans-
ducer A = (Q,S, ∆, F ) let the column transducer for A be defined as the automaton



32 CHAPTER 6. REGULAR COMPOSITIONS

Â = (Q∗, S∗, ∆̂, F ∗) where ∆̂(q1q2 · · · qn, (a, a′), q′1q
′
2 · · · q′n) holds for sequences of

equal length n such that there exist a0, a1, . . . , an with a = a0, and a′ = an, and
∆(qi, (ai, ai+1), qi+1) holds for all i with 0 ≤ i < n.

We can now, using a column transducer, express all the operations we are interested
in.

Theorem 6.2 Let A = (Q,S, ∆, F ) be a transducer and let Â = (Q∗, S∗, ∆̂, F ∗)
be the column automaton for A. Then, for two sets of sequences X1, X2 ⊆ Q∗, the
following hold:

1. [suff(X1)] ∪ [suff(X2)] = [suff(X1 ∪ X2)]

2. [suff(X1)] ◦ [suff(X2)] = [suff(X1 ·X2)]

3. [suff(X1)]
∗ = [suff(X∗

1 )]

Proof: (1) follows directly from the definition of suff(). To prove one direction of
(2), let (w, w′) ∈ [suff(X1)] ◦ [suff(X2)]. Then there exist a word w′′ such that
(w, w′′) ∈ [suff(X1)] and (w′′, w′) ∈ [suff(X2)]. Then w × w′′ ∈ suff(X1) and
w′′ × w′ ∈ suff(X2). Thus, there exist x1 ∈ X1 and x2 ∈ X2 such that w × w′′ ∈
suff(x1) and w′′ × w′ ∈ suff(x2). Further, we have that ∆̂(x1, w × w′′) ∩ F ∗ 6= ∅
and ∆̂(x2, w

′′ × w′) ∩ F ∗ 6= ∅ hold. It follows from the definition of ∆̂ that
∆̂(x1x2, w × w′) ∩ F ∗ 6= ∅ holds. Thus, w × w′ ∈ suff(x1x2). Since x1 ∈ X1 and
x2 ∈ X2, we have that x1x2 ∈ X1X2, and thus it follows that w×w′ ∈ suff(X1X2)
and (w, w′) ∈ [suff(X1X2)]. The other direction can be proved in a similar way.

To prove (3), use induction using (2). ¤

6.2 SUBSET CONSTRUCTION

The column transducer defined in the previous section has an infinite number of
states since the columns can be of arbitrary length. We will now attack the problem
of making the column transducer finite-state. Our strategy will be to apply the
standard subset construction (for a description of the subset construction, see e.g.
Kozen[Koz97] ch. 6).

For an automaton A = (Q,S, ∆, F ), the result of the subset construction is the
automaton (2Q, {S}, ∆P , {F0 : F0 ∩ F 6= ∅}), where ∆P is defined such that
∆P (Q0, a, Q′

0) iff ∆(Q0, a) = Q′
0. It is constructed by an iterative process, starting

with the set of initial states S applying ∆ obtaining new states ∆(S, a) for each
symbol a. The process is repeated until no new states are found.

Let us apply the subset construction on a column transducer. For the remainder
of this section, let A = (Q,S,∆, F ) be a transducer over Σ × Σ and let Â =
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(Q∗, S∗, ∆̂, F ∗) be a column transducer for A. To apply the subset construction,
we need to compute the image ∆̂(X, (a, a′)) for a set of columns, i.e., states in the
column transducer X ⊆ Q∗, and some symbols a, a′ ∈ Σ. In general, the transition
relation is regular for regular sets of columns, due to the following theorem.

Theorem 6.3 Let X be a set of states and a, a′ ∈ Σ be two symbols. Then
∆̂(a,a′) = {(x, x′) : ∆̂(x, (a, a′), x′)} is a regular relation on Q∗ ×Q∗.

Proof: The relation R1 = [{(q, q′, b, b′) : (q, (b, b′), q′) ∈ ∆}∗] is a regular relation
on Q∗ × Q∗ × Σ∗ × Σ∗. The relation R2 on Σ∗ × Σ∗ consisting of all words
(a1a2 · · · an, a′1a

′
2 · · · a′n) such that a = a1, a′ = an, and ai = a′i−1 for all i with

1 < i ≤ n is also regular. Now ∆̂(a,a′) = π(1,2)(R1 ∩ (Q∗×Q∗×R2)). ¤

With this operation, we can apply the standard subset construction, by repre-
senting sets of states, i.e., sets of columns, using regular sets over the alphabet Q.
Continuing our token ring example, we take the initial set of states of the transitive
closure of the transition relation, which is the set q+

0 , a regular set over {q0, q1, q2},
denoting one or more applications of the transition relation represented by the
state q0. The resulting construction is shown below.
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6.3 DETECTING EQUIVALENT STATES

Applying the subset construction still does not yield a finite-state transducer in
most cases. The reason is that there may be an infinite number of different states
which are equivalent in the sense that they have the same set of suffixes. In this
section, we will try to remedy this by attempting to find equivalent states in the
same way as when minimizing an automaton.

Looking at the subset construction resulting from the token ring example, we can
see that sequences of the state q2 is growing in length. The relation denoted by
the state q2 is just checking the condition that all symbols are N , and it does not
matter how many times this is checked as long as it is done at least once. This
leads to the following simple observation.

Lemma 6.4 Let R be an idempotent relation, i.e., R = R ◦R. Then Ri = R+ for
all i > 0.

Proof: By induction on the number of compositions. ¤

Another observation is that since [suff(q2)] is a subset of the identity relation, for
any columns x, x′ ∈ Q∗ we have that [suff(x · q2 · x′)] ⊆ [suff(x · x′)]. In general,
this holds for any relation which is a subset of the identity relation.

Theorem 6.5 For a set of configuartions Γ, and let R be a relation such that
R ⊆ IdΓ. Then

1. R ◦R = R.

2. R ⊆ IdΓ.

Proof: Immediate. ¤

Corollary 6.6 For a set of states X ⊆ Q∗ and a state q ∈ Q such that [suff(q)] ⊆
IdΣ∗, the following hold:

1. If x1 · q · q · x2 ∈ X, then suff(X) = suff(X ∪ {x1 · q · x2}).
2. If x1 · x2 ∈ X, then suff(X) = suff(X ∪ {x1 · q · x2}).

¤
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Based on the observations above, we will devise a method for detecting equivalent
states. The method is based on saturation, which means that given two sets
of columns, we try to add columns to both sets without changing the relations
represented by the sets, and finally check if the two saturated sets are equal.

For a set of states X, the saturated set of X by a the set of states Q0, denoted
dXeQ0 , is the set of states containing X and closed under the following rules for
all states q ∈ Q0:

1. If x1 · q · q · x2 ∈ dXeQ0 , then x1 · q · x2 ∈ dXeQ0 .

2. If x1 · x2 ∈ dXeQ0 , then x1 · q · x2 ∈ dXeQ0 .

For a set X of sequences, we will denote by dXe the set dXeQ0 where Q0 is the
set of states q ∈ Q such that [suff(q)] ⊆ IdΣ∗ . This is the saturation we will use
and is motivated by the following theorem.

Theorem 6.7 Let X, Y ⊆ Q∗ be sets of sequences. Then dXe = dY e.

Proof: Follows from the rules of saturation and Corollary 6.6, in that the tuples
in the relation represented by the added columns already exists in the relation
represented by the columns that are already there. ¤

In the subset construction we use saturation in the following way. When we have
computed a new state X, we check for each old state Y if it is equivalent by checking
if dXe = dY e. The result of saturating the states in the subset construction in the
case of the token ring example is shown below:
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We see that we do not get different saturated sets after some iterations, and thus
the construction terminates resulting in the automaton shown below:
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6.4 SUFFICIENT CONDITIONS FOR TERMINATION

In this section we will give a sufficient condition for the termination of the algo-
rithm of the previous section to compute a finite-state transducer for a regular
composition. We do this by limiting the number of states in the columns from a
special subset of the states, as follows.

Definition 6.8 Let A = (Q,S, ∆, F ) be a transducer over Σ×Σ and let X ⊆ Q∗

be a set of sequences of automata states, and Q0 ⊆ Q be a subset of the states
in A. The set of sequences X has local depth k w.r.t. Q0 if all sequences x ∈ X
contains only at most k occurences of states from Q0. ¤

The states Q0 in the above theorem are the states that can only occur a bounded
number of times in the columns. The rest of the states Q \ Q0 will be handled
by showing that any set of sequences of such states will be in one of a finite set
of equivalence classes. These states will be restricted to be two states checking a
condition of the form IdΣ∗0 for some Σ0 ⊆ Σ. In terms of the token ring example,
these states will be q0 and q2, and the state q1 is the state that may only occur a
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bounded number of times in the columns. For this transition, representing passing
the token to the next process, the number of occurences of the state q1 can be
at most 1 since one position can only be in the middle of a change once, when
having the token and passing it to the next process. The state q2 will be saturated
during the subset construction, and the state q0 will already be saturated due to
the following theorem.

Theorem 6.9 Let A = (Q,S, ∆, F ) be a transducer over Σ×Σ where S = {ql} for
a state ql ∈ Q such that [pref(ql)] ⊆ IdΣ∗ and let Â = (Q∗, S∗, ∆̂, F ∗) be the column
automaton for A. Then for all w ∈ (Σ×Σ)∗, we have that d∆̂(S, w)e{ql} = ∆̂(S, w)

Proof: Consider a sequence x ∈ ∆̂(S, w) for some word w ∈ (Σ × Σ)∗. For
any x1, x2 such that x = x1 · x2 we have that pref(x1 · ql · x2) ⊆ pref(x1 · x2),
since [pref(ql)] ⊆ IdΣ∗ . From the fact that the set of initial states in the column
transducer is q∗l and that x1 · x2 ∈ ∆̂(S,w), it follows that x1 · ql · x2 ∈ ∆̂(S, w).
Using a similar argument, we can show that if x1 · ql · ql · x2 ∈ ∆̂(S, w), then
x1 · ql · x2 ∈ ∆̂(S, w). ¤

A state ql such that [pref(ql)] ⊆ IdΣ∗ is already saturated due to the above theorem,
and a state qr such that [suff(ql)] ⊆ IdΣ∗ is saturated by our construction. The
relations represented by combinations of such states can be divided into a finite
set of equivalence classes, due to the following theorem.

Theorem 6.10 Let A = (Q, {ql}, ∆, F ) be a transducer over Σ × Σ where ql, qr

are states such that

• [pref(ql)] ⊆ IdΣ∗, and

• [suff(qr)] ⊆ IdΣ∗

and let Â = (Q∗, S∗, ∆̂, F ∗) be the column automaton for A. Then the set of
saturated sets dXe{ql, qr} such that X ⊆ {ql, qr}∗ is finite.

Proof: We prove that each of the saturated sets is a union of zero or more of

1. dεe{ql, qr}
2. dqle{ql, qr}
3. dqr · qle{ql, qr}
4. dql · qre{ql, qr}
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5. dql · qr · qle{ql, qr}
6. dqr · ql · qre{ql, qr}

To see this, note that each of the above sets represents constraints which is a
combination of whether the sequences start and end with ql or qr, and whether
it contains at least one ql and/or qr. Given these constraints, the saturation by
{ql, qr} inserts sequences such that all combinations is in the set. ¤

We immediately get the following result.

Corollary 6.11 Let A = (Q, {ql}, ∆, F ) be a transducer over Σ × Σ where ql, qr

are states such that

• [pref(ql)] ⊆ IdΣ∗, and

• [suff(qr)] ⊆ IdΣ∗

and the column automaton Â = (Q∗, S∗, ∆̂, F ∗) for A has the property that

• For all words w ∈ (Σ×Σ)∗, the set of columns ∆̂(S, w) has local depth w.r.t.
Q \ {ql, qr}.

Then the set {d∆̂(S, w)e : w ∈ (Σ × Σ)∗} of saturated columns obtained during
the subset construction of Â is finite.

Proof: Follows from the definition of local depth and Theorem 6.10. ¤

To better understand the above theorem, we will formulate it in terms of relations.
First, we have to define what it means for a relation to have local depth.

Let Σ be an alphabet. A guarded transition is a triple (φL, R, φR) where φL and
φR are regular languages over Σ and R is a regular relation on Σ∗ × Σ∗. We will
associate with (φL, R, φR) the relation IdφL

· R · IdφR
. The separation into three

components serves to structure a transition into a guarded rewriting rule, where
R is the rewriting rule, and φL and φR are contexts in which the rewriting may
occur. A set of indicies C is a change set w.r.t. a pair (w,w′) ∈ (φL, R, φR) and
the guarded transition (φL, R, φR) if w = wl · u · wr and w′ = wl · u′ · wr where
wl ∈ φL, and wr ∈ φR, and (u, u′) ∈ R and C = {i : |wl| < i ≤ |wl · u|}. A
sequence w0w1 · · ·wm of words of equal length n such that (wj , wj+1) ∈ (φL, R, φR)
for all j with 1 ≤ j < m has local depth k w.r.t. (φL, R, φR) if there is a change
set Cj w.r.t. to (wj , wj+1) and (φL, R, φR) for all j with 1 ≤ j < m such that for
all i with 1 ≤ i ≤ n we have that the set {j : i ∈ Cj} has at most k elements.
Finally, (φL, R, φR) has local depth k if for all pairs (w, w′) ∈ (φL, R, φR)∗ there
is a sequence w0w1 · · ·wm with local depth k w.r.t. (φL, R, φR) such that w = w0

and w′ = wm.
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Theorem 6.12 Let (φL, R, φR) be a guarded transition with local depth k for some
k where φL = Σ∗L and φR = Σ∗R for some ΣL, ΣR ⊆ Σ. Then (φL, R, φR)∗ is
regular.

Proof: The relation (φL, R, φR) can be represented by a transducer having a state
ql such that pref(ql) = Σ∗L, a state qr such that suff(qr) = Σ∗R, and states between
ql and qr recognizing R. It follows from Corollary 6.11 that (φL, R, φR)∗ is regular.
¤

We can generalize the forms of the languages φL and φR in the above theorem to
languages defined as follows.

Definition 6.13 Let Σ be an alphabet. A language L is a left context if there is
some set of symbols Σ0 ⊆ Σ such that for all words w ∈ L we have that w ·w′ ∈ L
iff w′ ∈ Σ∗0. The set Σ0 is called the tail of L. A language is a right context if its
reverse language is a left context. ¤

Lemma 6.14 Let Σ be an alphabet, L be a left context over Σ where ΣL is the tail
of L and let R be a regular relation on Σ∗×Σ∗. Then (IdL ·R)∗ = IdL ·(IdΣ∗L ·R)∗.

Proof: Let (w, w′) ∈ (IdL · R)∗. Let wl be the shortest word in L such that w =
wl ·w0 for some word w0. Since wl is shortest it follows that w′ = wl ·w′0 for some
word w′0. From the definition of left context it follows that (w0, w

′
0) ∈ (IdΣ∗L ·R)∗.

The other direction follows from the fact that L · Σ∗L ⊆ L. ¤

Theorem 6.15 [JN00] Let (φL, R, φR) be a guarded transition with local depth k
for some k where φL is a left context and φR is a right context Then (φL, R, φR)∗

is regular.

Proof: Apply Lemma 6.14 twice followed by Theorem 6.12. ¤



Chapter 7

Implementation

In this chapter we describe an implementation of regular model checking to provide
evidence that it is a framework for automated verification. It is important to stress
that we do not claim to have the most efficient framework available for all types
of systems. Even so, we are able to provide some promising results regarding the
efficiency of our method.

Before the implementation, little was known about the applicability of the meth-
ods in practice. The most important tool in regular model checking is automata
theory for representing regular sets, which made it probable that the efficiency
of the methods were to rely heavy on the implementation of automata. There
are several packages available for automata. For example, verification based on
monadic second order logic use automata as its basis, implemented by the packages
MONA[HJJ+96] and Mosel[KMMG97]. There is also a package called AMoRE[MMP+95],
implementing most standard operations on automata. Our first implementation
was based on MONA, which uses BDDs to implement deterministic automata very
efficiently. In particular, the minimization operation is very efficient. We wanted,
however, to experiment with the use of nondeterministic automata but still use
BDDs as a basis for the implementation. Furthermore, the interface to the au-
tomata package in MONA is inspired by the use of monadic second order logic,
while we needed a more direct interface. This lead to an implementation of a
general package for nondeterministic automata based on BDDs, which has been
used as a basis for the implementation of regular model checking.

A BDD is a data structure for representing relations over finite domains, exploiting
regularities in the relations to keep the representation compact. MONA uses BDDs
only for representing the alphabet part of the transition relation of the automata.
As we use nondeterministic automata, we decided to represent the entire transition
relation using BDDs, including the states. This has some interesting consequences,
which we will discuss in this chapter.

We will begin by describing a framework for relations represented by BDDs. Al-
though BDDs allow for a very compact representation of certain sets and for effi-
cient operations it also introduces a degree of complexity. We will define a number



42 CHAPTER 7. IMPLEMENTATION

of abstractions to deal with this complexity, leading to a framework for working
with relations represented by BDDs. This framework has been used as a basis for
implementing the automata package, which allows for some interesting implemen-
tation techniques for some of the automata operations.

Once the automata package is in place, the implementation of regular model check-
ing is quite straightforward. There are some tricks one can use, but most of the
efficiency depends on the automata package.

7.1 RELATIONS - ABSTRACTING BDDS

There are many algorithms which are formulated using sets and relations, they are
the basic elements of reasoning. Accordingly, there are also many data structures
for representing sets and relations, for example binary trees, lists, and so on. One of
these data structures are BDDs, Binary Decision Diagrams, used for representing
large sets compactly by exploiting regularities in the set. Thus, for sets with a
large degree of regularity this is a good choice.

Many algorithms are formulated with expressions like “For all x, ...” or “take the
set of all ...”. With an explicit representation of the sets, this translates to loops
over these sets. Using BDDs, we can use existential quantification instead which
in some cases does not need to explicitly enumerate all the possible elements in
the set due to the compact representation. The complexity of the algorithms then
becomes dependent on the complexity of the sets, not their size.

In this section, we explore the possibilities the BDD representation can give us
when representing relations. Having a generic way of representing relations also
gives a way to cleanly implement the theories of automata and other frameworks,
since they are formulated in terms of relations.

7.1.1 Binary Decision Diagrams

A binary decision diagram, or BDD for short, is a data structure used to represent
boolean formulae or, equivalently, sets of bitstrings. This structure has been used
extensively for verification of hardware circuits, due to its capability of representing
large sets with a high degree of regularity. During the years, this has become
a popular representation for different applications, including model checking of
finite-state systems. An important property of BDDs is that they are canonical,
i.e., they can be checked for equivalence in constant time. This property can be
used to perform some operations on relations very efficiently.

A BDD is a tree where the nodes are labeled with boolean variables and the leaves
are true and false. Each node has two edges, representing the two possible values
of the variable labeling the node. A BDD represents a set of boolean variable
assignments in the following way. Starting from the root, the edges are traversed
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by looking at the variable labeling each node and the variable assignment. If the
variable is true, we take the edge representing the true choice. If the variable is
false, we take the edge representing the false choice. Eventually, we get to a leaf
which is either true or false. If it is true, the variable assignment is in the set. If
it is false, the variable assignment is not in the set.

Not all variables need to be represented in the BDD. If a variable is not present
in the BDD, it means that the set is independent of the value of this variable.
Also, isomorphic subtrees are shared which is the way in which BDDs exploits the
regularities in the sets.

Formally, BDDs are defined as follows.

Definition 7.1 A BDD t is either a leaf node or a variable node. A leaf node is
either true or false. A variable node is a tuple (v, tl, th) where v ∈ N is a variable
index and tl, th are BDDs. We associate with each BDD t a relation on infinite
bitstrings 0, 1ω such that t(b) holds iff t is a the leaf node true or t is of the form
(v, tl, tr) and we have that tl(b) holds if bv = 0, and that tr(b) holds if bv = 1. ¤

The nodes in a BDD are normally ordered, such that when traversing the tree from
the root, we visit the variables in increasing order. We will assume that all BDDs
are ordered. It is this property that makes BDDs canonical, i.e., there are no two
BDDs representing the same relation.

BDDs are constructed using a unique hashing table, which ensures that identical
BDDs are stored in the same position. This makes it possible to check for equiv-
alence between two BDDs in constant time. The unique hashing table is used
when constructing the BDD and is indexed by the variable and the two successors.
BDDs are constructed bottom-up, consulting the unique table to see whether the
BDD already exists.

7.1.2 Representing Relations

A BDD represents a set of bitstrings and will be used as the building block for
representing relations. To represent relations, different parts of the bitstrings will
be associated with different components of the relation. We will call such a part a
domain.

A domain D ⊆ N is a set of variable indices. For a domain D = {i0, i1, . . .} where
i0 < i1 < · · ·, and a bitstring b ∈ {0, 1}ω, where we use {0, 1}ω to denote the set
of infinite bitstrings, and a BDD t we associate with D a projection on bitstrings
such that D(b)ik = bk for all k with 0 ≤ k ≤ |D|. Note that the bitstring D(b) is
infinite iff D is infinite.

Using domains, we can type BDDs.
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Definition 7.2 A typed relation R of arity k is a tuple (D, t) whereD = (D1, D2, . . . , Dk)
is a tuple of domains where each Di ⊆ N is a set of variable indices and t is a
BDD. ¤

A typed relation R = ((D1, D2, . . . , Dk), t) defines a relation on tuples of bitstrings
{0, 1}|D1|×{0, 1}|D2|×· · ·×{0, 1}|Dk| consisting of the set of tuples (D1(b), D2(b), . . . , Dk(b))
such that t(b) holds.

7.1.3 Exploiting the Structure of BDDs

When we have divided the BDDs into parts as we do when we type them using
domains to specify variables that describe different components of the relations,
we can exploit the structure of the BDDs to implement operations on relations.
The common operations on relations such as intersection and union is part of
the standard operations on BDDs, as is the projection operation corresponding to
existential quantification. Here, we describe an operation for finding images of a
binary relation which will be used to implement minimization of automata.

The first observation is that each subtree represents a set, since each subtree is
also a BDD. When we have traversed the BDD from the root to a subtree, we have
chosen values for the variables we have seen so far. If we think of the part that we
have traversed as the first component of a binary relation, and the remaining part
as the second component of a binary relation, and consider the result of applying
the relation to the sets of bitstrings represented by the choices we have made so
far, then the subtree we are currently at represents the image under this set of
bitstrings.

This leads to a technique for finding images of a relation by finding the set of
subtrees. This requires that the variable indices of the second component of the
binary relation are higher than any variable index of the first component.

Let R = ((D1, D2), t) be a typed binary relation such that all variable indices in
D2 are higher than any variable index in D1. Then we can compute the set of
images {R(x) : x ∈ {0, 1}|D1|} of R by finding subtrees in the BDD t that are
located below any variables in D1. For a BDD t and a domain D, we define the
function subtreesD to be defined as

subtreesD(false) = false
subtreesD(true) = true
subtreesD((v, tl, tr)) = (v, tl, tr), if v 6∈ D
subtreesD((v, tl, tr)) = subtreesD(tl) ∪ subtreesD(tr), if v ∈ D

Claim 7.3 Let R = ((D1, D2), t) be a typed binary relation such that all variables
in D2 is higher than all variables in D1. Then (D2, subtreesD1(t)) denotes the set
of images {R(x) : x ∈ {0, 1}|D1|}. ¤
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When we have the images, we can also compute the ranges for these images by
looking at the path that leads to the subtree representing the image. For two
BDDs t, tim and a domain D wee define pathsD(t, tim) as follows:

pathsD((v, tl, tr), tim) = (v, pathsD(tl, tim), pathsD(tr, tim)), if v ∈ D
pathsD(t, tim) = true, if v 6∈ D ∧ t = tim
pathsD(t, tim) = false, if v 6∈ D ∧ t 6= tim

Claim 7.4 Let R = ((D1, D2), t) be a typed binary relation such that all variables
in D2 is higher than all variables in D1, and let I = (D2, tim) be a typed relation de-
noting the image R(b) under some bitstring b ∈ {0, 1}|D1|. Then (D1, pathsD1

(t, tim))
denotes the set of bitstrings b′ ∈ {0, 1}|D1| such that R(b′) = R(b). ¤

In the next section, we show examples of how this operation can be used to im-
plement some of the operations on automata efficiently.

7.2 AUTOMATA

The framework of relations based on BDDs described in the previous section gives
a basis for implementing a generic automata package.

It is important to stress that we are considering nondeterministic automata. There
are other representations more specialized to deterministic automata, but we want
to use nondeterministic automata to investigate the possible advantages such a
representation could give us.

Let us recall the definition of automata. A finite automaton A over an alphabet
Σ is a tuple (Q,S, ∆, F ) where Q is a finite set of states, S ⊆ Q is a finite set of
initial states, ∆ : Q × Σ × Q is a transition relation, and F ⊆ Q is a finite set of
accepting states.

All of these sets and relations will be represented using the BDD based relation
representation presented in the previous section. Thus, the set of states is a set
of bitstrings, and the transition relation is a relation between bitstrings. Even the
alphabet is considered to be a set of bitstringsXFEXP .

Product Let us illustrate this representation by looking at the product of two au-
tomata. The two automata A1 = (Q1, S1,∆1, F1) and A2 = (Q2, S2, ∆2, F2) have
their transition relations ∆1 and ∆2 represented by a typed relation ((Ds

1, D
a
1 , Dt

1), t1)
and ((Ds

2, D
a
2 , Dt

2), t2), respectively.

A product of A1 and A2 involves reasoning about tuples (q1, q2) ∈ Q1 ×Q2. The
resulting automaton has states from Q1 × Q2 where the transition relation ∆ is
defined by ∆((q1, q2), a, (q′1, q

′
2)) iff ∆1(q1, a, q′1) and ∆2(q2, a, q′2).
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In terms of the typed relations, we need to adjust their domains such that we can
take the product of the two BDDs t1 and t2 and get the result we want. First of all,
we like the second component, the alphabet, to be the same. This is accomplished
by assuring that Da

1 = Da
2 , and can be done by renaming the variables in one of

the BDDs. Second, we want the domains of the first and third component two be
disjoint in the two relations, i.e., such that D1

s ∩ D2
s = ∅ and D1

t ∩ D2
t = ∅. If

we have these conditions, the typed relation ((D1
s ∪ D2

s , D
1
a, D

1
t ∪ D2

t ), t1 ∧ t2)
denotes the desired relation ∆.

Minimization We will describe the minimization operation and how it takes
advantage of the operation for finding images described in the previous section.
The minimization algorithm involves finding a bisimulation relation ∼ that parti-
tions the set of states Q. The algorithm finds this partitioning by iteration starting
from a partition containing the final set of states F and the non-accepting set of
states Q \ F .

In each iteration of the algorithm, a new partition is constructed from the old one.
A function f from Q to sets of bitstrings is maintained as a representation of the
current partition. The exact value of f(q) for a state q ∈ Q is not important, but
whether for two states q, q′ ∈ Q we have that f(q) = f(q′) in which we say that the
two states are in the same partition. To compute the new partition, we enumerate
the current partition using a function e : Q 7→ N such that e(q) = e(q′) iff q and
q′ belongs to the same partition . The function f ′ representing the new partition
is then defined as follows:

f ′(q) = {(a, n, n′) : ∃q′ : ∆(q, a, q′) ∧ e(q) = n ∧ e(q′) = n′}

and is found by forming a relation of arity four and finding the images, using the
technique described in the previous section. Each such image represents a part in
the new partition, and using the technique for finding ranges, also described in the
previous section, we find the set of states in each part.

7.3 EXPERIMENTAL RESULTS

The algorithms described in Chapter 2 have been verified with the execution times
shown in the table below. The exact figures is not that important, other than that
they are within a range that is reasonable for a verification tool.
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Algorithm Execution time in seconds
Bakery 18.12
Ticket 13.74
Szymanski 102.97
Dijkstra 203.79
Burns 32.79
Token Array (LIVENESS) 90.70
Termination Detection 44.99
Alternating Bit 79.77
Sliding Window 302.88

A note on the modeling of the sliding window protocol. Since this protocol contains
both integer variables for the sequence numbers and an unbounded queue, we had
to limit one of them since there is only one “dimension” of the words. The length of
the queue was made bounded while the three integer variables were left unbounded,
as was the sequence numbers in the queue. The limit of the queue length can of
course be changed, but this will have effect on the execution time.

The execution time for the token array example is shown for verification of a
liveness property: that for all processes we have that it eventually gets the token.
Liveness properties take in general much more time to verify than safety properties,
as expected. Safety properties for the token ring example can be verified in matters
of seconds.



Chapter 8

Conclusions

In this thesis we have described a framework in which it is possible to describe
several different types of infinite-state systems while still being able to perform
automated verification. There are more specialized techniques for each of the
types of infinite-state systems we have considered, and it may well be that these
techniques are more efficient than ours, but our framework allows us to formulate
these systems using a unified technique. The current implementation shows that
the framework is not only theoretical, but is possible to implement with reasonable
efficiency.

Regular model checking impose the restriction that the set of states and the tran-
sition relation must be regular. In the example of the sliding window protocol, the
length of the queue had to be restricted to be able to represent both the queue and
sequence numbers. This is because a word has only one dimension, and regular
sets can only represent constraints between symbols that have a bounded “dis-
tance”, since automata recognizing regular sets only have finite memory. Some
tricks are sometimes necessary for the encodings such that the set of states and
the transition relations have these properties. It remains to be seen to what extent
these tricks can be automated.

The encoding into a regular model is now done manually. In the future, one can
think of standard schemes of translating models into a regular model, having nice
properties in terms of making the sets of states regular. For example, we have seen
that some encodings of integer variables are better than others. This could be a
part of a tool such that the algorithms may be specified on a higher level using
e.g. integer variables and queues, and then being transformed automatically into
a regular model.

The acceleration techniques presented in this thesis are able to emulate the accel-
eration operations for FIFO channels reported in Boigelot and Godefroind [BG96],
but not those of Bouajjani and Habermehl [BH97] which also considers transitive
closures that result in non-regular relations between words. Often when sets of
states become non-regular it is because there are some linear constraints between
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the number of occurrences of some symbol. An interesting direction is to combine
regular sets with linear constraints, as considered by [BH97].

More work remains to make these techniques more efficient. This can be done by
finding new ways to represent and operate on automata, but also by finding new
ways of handling infinite compositions of regular relations.
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